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A NEW THEORY FOR IMAGE FORMATION WITH QUASI-HOMOGENEOUS
SOURCES AND ITS APPLICATION TO THE DETECTION AND LOCATION

OF ICBM LAUNCHES

1. INTRODUCTION

The detection of the launch of an ICBM-type missile by a hostile country toward the United

States is of serious interest to the "Brilliant Eyes" program. The most easily detected signature

from the launch of the missile appears to be the thermal radiation from the exhaust of the booster

rocket. This radiation can be expected to be bright and easily detected against the sky provided that

the radiation is not concealed by clouds, solar background, or other such phenomena.

The radiation from an ICBM booster rocket can be analyzed by the use of the quasi-

homogeneous source model developed by Carter and Wolf [1]. In this report, such an analysis is

done for the first time to compare the various methods that have been suggested for detecting an

ICBM launch and locating its position. In Section 2, a theory describing the basic imaging

problem is developed by using the methods of optical coherence theory with the quasi-

homogeneous source model. In Section 3, a generalized imaging system, which can be used to

describe most all of the imaging systems considered for the ICBM launch detection problem, is

described by use of this theory. Section 4 discusses the limitations of small imaging system

apertures on the resulting image and modifies the theory to account for this effect. Section 5

specializes the generalized imaging system to study the imaging properties of interferometers

(similar to the radio interferometers used for radio astronomy). And Section 6 describes how the

generalized imaging system studies the imaging properties of the more conventional telescope.

This theory shows that the physics behind the operation of an interferometer based on a

Michelson stellar interferometer and the operation of a conventional telescope are almost identical

In both cases, it is the second-order correlation function for the field fluctuations over the

instrument's aperture that contains the information required to form an image. In the case of the

Michelson interferometer, the correlations are carried out point pair by point pair and then
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W. H. CARTER

numerically Fourier transformed to give an image. In the case of a telescope, the imaging lens

Fourier transforms the field correlation function for all point pairs in the aperture plane and
produces an image intensity proportional to this transform. In both cases, the image is formed

from the aperture field correlations by Fourier transformation. Only the method for carrying out

this transformation is different in the two cases.

2. BASIC IMAGING THEORY

Consider a source of thermal electromagnetic radiation, such as the plume of a booster rocket,

that we want to image in some manner. Let the origin of coordinates be located near the center of
the source as shown in Fig. 1. The detectors for the imaging device are located over some region

of a spherical surface of radius R from the origin.

detectors

object

source free media

x-y plane

Fig. I - The geometry used for the calculations

We assume that the entire, infinite space in Fig. 1 is source free except for the object that we
want to image. We furthei assume that the object is much hotter than its surround so that it radiates

a thermal eiectromagneti,. field such that any monochromatic, scalar Cartesian component of the
vector field satisfies the inhomogeneous Helmholtz equation [2, Eq. (6.54))

(V2 + (2 r) 2 )U(.5) = -4r p(ff), (1)

2



NRL REPORT 9336

where p(,9) is the source distribution within the object, and we express all spatial coordinates in

units of one wavelength of the monochromatic field component. The well known Green's function

solution to Eq. (1) over an infinite region devoid of any other sources is

U(f) = Jf p(ff') e 2mli-v'I1 I - "l d-.', (2)
source VoluMe

[2, Eq. (9.3)], where the primed coordinates represent a radius vector from the origin to a point in

the source, and the unprimed coordinates represent a radius vector from the origin to a field point

within the half space to the right of the x-y plane in Fig. 1.

If the object can be contained completely within a sphere of radius a, then for any field point

,Y outside of the Rayleigh range of the source, we can approximate the Green's function in Eq.

(2) by the expansion [2, Eq. (9.7)]

e 21d1-5i1 V'- [e21dil / V e2xs 95/IR (3)
jI~x'.2ra,

Thus, if the detector surface is well outside of the Rayleigh range of the source, we can represent

the field there by

U (")(5E)= f P(X") e -21caV"R d IX, e2,6R / R, (4)

Source VOWum

whereR= l.

We assume that the intensity of the radiation field is measured by an array of detectors

distributed over a portion of a sphere of radius R from the origin in the far field of the source. We

further assume that the detectors are sensitive only within the infrared or optical range of

wavelengths and that, unlike typical radio receivers, they average over many coherence lengths of

the thermal radiation. We also assume that the field is ergodic so that the time-averaged field

intensity can be treated by using ensemble averages as is usually done in coherence theory [3].

Then the detectors produce an electric signal proportional to the optical intensity

(.V ) = (U 1-1)'lo3), (5)
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where the sharp brackets denote an ensemble average. To study the propagation of the field from

source to detector, we introduce the cross-spectral density function

W (III,5E2) =(U (.2d)[U (22)]"), (6)

the trace of which is equal to the intensity. Upon substitution from Eq. (4) into Eq. (6), we get

W -I(I 3E2)= ff1 fff W, E 1)2
source volumne source volumec

X e x2 r(!a C-2 )IRd 3 d 3 2 / R 2 (7)

where we define the source correlation function by

W I2) = (p"E,)P(.2)). (8)

For the thermal source, we can assume that the source distribution is quasi-homogeneous so

that [1]

WP (5E,x'1)= 1P [ (5E, + 5E) /2] yp (5E,'-.5E), (9)

where I() are the intensity and complex degree of spectral coherence over the three-

dimensional source, respectively. For a thermal source, it has been shown [4] that

up (E-) = sin(2rj_4) / (2 rj'Z), (10)

in units of one wavelength.

By substitution from Eq. (9) into Eq. (7), we get [5,6]

W (-)(R'i, R92) = 1.(9_) At('+) / R 2, (1)

for the cross-spectral density function over the detector array, where

J= fI l(5Ex-) e -2ii:.;.d 35., (12(a))
source volue

4
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and

f()= RP(_) e d 3Z (12(b))
sourcevolume

and where

9, = (91' + 9)12,

Y- = (YI - x9,213

in which s, = x R and Y = 5E2 R are unit vectors from the origin toward the field points

5, and 2 , respectively. Upon substitution from Eq. (10) into Eq. (12(b)), we have

jig (') = Jjf sin(27EIZ') / (271ZM1) e -2""d" 3z.
source volume

= 474 sin(27r_) sin(27rLI+Y) r2 dr
0 -7u 2mIrr4I+ - -

71#if sin(2nr)sin(27u4xiLJ) dr.
0

(14)

Since 9, and s2 are unit vectors, it follows from Eq. (13) that 9+ is also. Thus

f, (Y) = C (15)

is simply a constant proportional to the volume of the object for a thermal source. Upon

substitution from Eq. (15) into Eq. (11), we have finally

W '-'(R91, R92)=C ip,( - "Y2) I R .  (16)

From Eq.(16), it is clear that the cross-spectral density function is given by components of the

three-dimensional Fourier transform of the source intensity. This relationship is much more

complicated than it might first appear from Eq.(16). The principle complication arises fi'om the fact

5
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that W (-) (RYh, R"2 ) can be measured only over the surface of the sphere of radius R as shown in

Fig. 1, whereas ip(91 - s2) is a three-dimensional spatial frequency spectrum of the source

intensity as shown in Fig. 2. Thus a single measurement of W (-)(Rg, RY2) over a portion of the

measurement sphere in Fig. 1 only gives data values for 1.(1 - 92) over a portion of a surface

within the three-dimensional spatial frequency space of the object intensity distribution I ¢o(,), as

shown in Fig. 2. This is not enough information to perform the three-dimensional Fourier

transformation to calculate the image I'°1(5.'). Thus it is easy to calculate W (-')(RY1, RS2)

given Ip(9, - Y2) but not so straightforward to do the inverse, which is what we need to do.

It is the job of our imaging system to measure the cross-spectral density function

W (-)(R9, RY2) over the detector plane and to use this information to find lp(-). There are two

classes of imaging systems that can do this, inte-ferometers and telescopes. In the following

sections, we describe both types of systems by using a unified theoretical approach to aid

comparisons.

3g

2

Fig. 2 - Spatial ficqlucntcy domain of -PY 'V2)

6
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3. GENERALIZED IMAGING SYSTEM

Almost any linear imaging system can be realized by the generalized imaging system shown in
Fig. 3.

x-y plane opaque stop lens image plane

IX
X,0

objectf

R I

-, K - -----. --- , If--

Fig. 3 - Generalized imaging system

This is not a design that is necessarily recommended for actual deployment, but it is extremely

useful for comparing the various capabilities of optical imaging systems since this system can
mimic almost any known stationary imaging system by the proper choice of holes in the opaque

stop. Notice from Fig. 3 that the object, which is assumed to satisfy all of the assumptions made
in the last section, radiates a distance R to the imaging system, which is assumed to be outside of
the Rayleigh range of the object so that Eq. (16) holds. The imaging system consists simply of an
opaque stop pierced with holes that occupies a portion of the detector plane in Fig. 1, a diffraction-
limited lens, and an image plane a focal lengthf away from the lens over which the intensity is

measured in some manner. If needed to simulate a more complicated optical system than we will

address here, the opaque stop can be replaced by a filter with a complex transmittance function T.
Then, as we will show, this generalized imaging system can mimic any linear, spatially stationary
two-dimensional system.

7
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As shown in Fig. 3, points within the object are indicated by the radius vector 2' from the

origin; points within the plane of the stop are indicated by the radius vector " from the z axis
within the detector plane; and points within the image plane are indicated by the radius vector 5

from the z axis within the image plane.

Equation (16) gives us the cross-spectral density function over the detector plane, which

contains all the information about the object that is present there. In the coordinates of our

generalized imaging system, this equation becomes

W ((, , R2) R f I ( e Ye -2X":'-4R d 3. (17)
SOurc volume

The stop is assumed to be represented by a transfer function T(&) such that the field amplitude is

modified by the relation

=) (18)

on passage through the holes in the stop. Upon substitution from Eq. (18) into Eq. (6), we find

that the cross-spectral density function is modified by

=([U ((~ T( ,1 )][U (2 T( 2)]*)

-W H(, , 2)T( ,)T'( 2). (19)

The diffraction limited lens can be assumed to take the Fourier transform of the field transmitted by

the stop over the detector plane so that the field amplitude over the image plane is [7, Eq. (5-15)

b fo J fU' d2  (20)

8
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Thus, by substitution from this equation into Eq. (5), we get for the intensity observed over the

image plane

Ii(*) =(o'(!)U ( ))

Upon substitution from Eqs. (17) and (19) into Eq. (21), we have

x i Il J(x)e -2=U: - S''t

xT )T( )e '2=tt41- " ' (+ '1' - "' )' )J'fd 2 d 2..(22)

Transforming coordinates by using

= + /.12,

S: /- 2, (23)

we get

x r .. +-_2)T'(C.-E_/2)e72 - ' +''' ' ' rf d C.f.. (24)

Equation (24) can be greatly simplified by introducing the modified Foarier optics operators

FT,1[(.!') J= JJ J(-V') e dx, (25)

FT2 F()= J JF(z )e 2 ° '' '" d , (26)

9
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and the incoherent transfer function

= T(_) ® T* (e_), (27)

where the operator ® denotes an autocorrelation. Thus, by substitution from Eqs. (25), (26), and

(27) into Eq. (24), we get

I,(.)= c FT2[FT3[IP(.e')1K( _)1. (28)

Equation (28) looks almost like the mathematical description of a a general linear system except for

the mixture of two-dimensional and three-dimensional Fourier transforms. The effects of this must

be analyzed in more detail.

4. IMAGING SYSTEMS WITH SMALL NUMERICAL APERTURE

Almost any imaging system that is not very near to its object, like a microscope, has a very

small numerical aperture. We can safely assume this is the case for any imaging system we might

envision for the purposes of this report. Thus we can assume that all of the holes in the stop in

Fig. 3 are contained within a circle of radius b. The transmittance function must then be given by

T()=O, if 2 + 2 > b (29)

outside of this circle. Since the spatial frequencies for IP(5 +) are given by

I R = ( ] R, ri/R, IR) according to Eq. (25), the stop will block all spatial frequencies except

those for which

( /R) 2 + (Tj/R)2 < (b / R) 2 , where = 4R - 2 2 . (30)

Figure 4 shows the location of these spatial frequencies. Figure 4 also shows that the domain of

available data is a portion of a sphere in spatial frequency space with a radius of unity parallel to

the , 'q plane at the origin and which projects a circle of radius bIR onto the , 71 plane.

10
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Fig. 4 - Domain of the thre-d imens ionAd spatial frequency spectra for the object

intensity I,(.i-i). The cross-hatched surface on the sphere illustrates the two-

dimensional domain that is available to form an image. The transparent circle is

the projection of that data onto thc il planc.
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Since these spatial frequencies are all that we have, we must study what they can give us rather

carefully. To do this most easily, we begin by considering not the complete object intensity IP (1,)

but the projection of it onto the z = 0 plane within the object,

I10 (x', y', 0) = f I, (.') dz'

= ifJf f i( / R, 11 / R, /R) e2 'I d /R)] dz'

= f J f i( /R,rlR,/R)e21i(z4+y'n)R e2i"z'IR dz']d 3 /R

= f l,( IR,r l R, O) e2ni(.'%' +y' n ,)R d(4 / R) d(rl / R), (31)

which is the two-dimensional Fourier transform of only the spectral data over the , 77 plane (in

agreement with the well-known projection slice theorem).

From inspection of Fig. 4, we observe that for small enough b, the spectral data that we have

available is asymptotically the same as the data over a disk of radius bIR from the origin in the

, ?J plane. Thus, by Fourier inversion of Eq. (31), we have

Ip( / R, ri / R, 0) = f fI 'o)(x , y', 0) e2 'z '' 'g+y ' )IR dx' dy', (32)

an expression for the spatial frequencies over the , 77 plane. Since this is more than all of the

spatial frequencies that are available in an imaging system that has a small numeral aperture, we can

replace the three-dimensional Fourier transform in Eq. (28) with Eq. (32) to get

f2= [-_ f i[ i(O)(x' y', O) e-2'[('-+y'T')iIR dx' dy']

x K( _) e_2 '[4-x n-YI1 f d 2 (33)

12
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Finally, transforming to the unit vector coordinates Y = (X /fy/f, - 1 -(xif (y

and ZY = (XI R, y'/ R, - (x'/ R)2 + (y'l R)2) from the center of the lens aperture toward

the object and image planes, respectively, we have from Eq. (33)

Ii( f§) = FT[FT[I' (0R')]K( (34)

by using the conventional Fourier optics operator

FTr[F( )] = f f F( ) e-2'"' x + 1yd 2" (35)

Equation (34) is exactly the same as the well known equation describing the data processing by a
general linear, stationary two-dimensional system. To simulate such a system with the options

shown in Fig. 3, we need only require that the (sometimes complex) k(_) function defined by

Eq. (27) can be physically realized. The input data to Eq. (34) is seen not to be the three-

dimensional intensity of the object lp(x) but rather the projection of this intensity onto the z = 0

plane 1(0) (R'-). Thus all depth information is lost because of the limited data collection area on the

detector plane.

A useful property for comparing imaging systems is the image of a point object, called the
point-spread function. To derive an expression for the point-spread function, we first apply the

famous convolution theorem [7, pg. 10) to Eq. (34) to get

li ( -)[) 1 K( -)e - i( '' n' ) d 2 -*_I0 '(-Rs), (36)

and then set the projected object intensity function 1 (0) (RY') to a point object, i.e.,

(0) (RY') = 82 (R'), (37)

13
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in Eq. (36). We then substitut., from (27), and use the autocorrelation theorem [7, p. 10] to get

h(7) = F FT[K(4_)], 2 (- Ri')

22

cl I- T _ e 2rn(4+-s, ") d 2 _J (38)

=7

Equation (38) gives the point spread function for our generalized imaging system when illuminated

by a quasi-homogeneous source. Clearly it is a function of only T(4-), the transmittance function

of the stop. By substituting from the second line of Eq. (38) into Eq. (36), we have the very

important equation

l(fi) = h(g) * 10) (-RY). (39)

From this equation we see the importance of the spread function for analyzing imaging systems.

The image is just the object function convolved with the spread function. If the spread function
were a Dirac delta function at the origin, the image would be a perfect replica of the object. Since

this never happens, what we want is a system that has as sharp a peak as possible at the origin and

is as close to zero as possible everywhere else to minimize background noise to the image. We

will look for such systems.

We have developed the generalized system as much as possible without making assumptions

that limit its application. In the following sections, we will use this system to analyze the imaging

properties of several interferometers and telescopes that might be used as sensors for detecting and

identifying the target of interest.

5. INTERFEROMETERS

An optical interferometer is not really so different from an ordinary telescope within this

theory, althoagh the manner in which the instrument is actually realized can be very much

different. To simuiate the operation of an interferometer, we use a stop (in the position shown in

14
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Fig. 3) that has small pinholes in it. The very simplest such stop would have a single pinhole on

the optic axis so that its transmittance function is given by

T( ) = 82 ( ). (40)

With this aperture, the generalized imaging system would behave as a pinhole camera, the lens

having no effect on the light from a sing!e point other than a simple phase shift. This case is

actually very difficult to treat since it requires a geometrical optics limit to the diffraction theory

used here [8]. To do this requires that we set up the diffraction integrals represented by Eq. (34),

and then evaluate them in a special way by using the method of stationary phase. Since such an

imaging device isn't presently considered very practical (very little light is admitted through one

pinhole) and the analysis is very long and complicated, we will not pursue this case further.

The next case is with a stop having two symmetrically placed pinholes (about the origin) a

distance d apart so that the transmittance function becomes

T() = 8 -/ 2) ((1) + 8 ( + d /2)8(l7). (41)

This turns out to be a very important case for the purposes of this study. This is an analog to the

Michelson stellar interferometer [9 , p. 275] and also the radio interferometer used as an element of

a radio telescope. For a radio telescope, the interferometer does not have the physical form of our

generalized imaging system with a transmittance function given by Eq. (40). It would not be

practical to build a radiO frequency lens the size of the Earth's orbit about the Sun (the values of d

can sometimes be that large in radio astronomy), but the basic mathematical models for a single

element of a radio telescope and our device are the same. Upon substittion from Eq. (41) into

Eq. (38), we get
h(g) = . [2 + 2 cos(27rds,)], (42)

where

K( )= 5( - d) 3(71) + 2 8( )S(ij)+ S(& + d)&(). (43)

This is the point-spread function for the Michelson stellar interferometer. Figure 5 shows a

simulation of this spread function obtained with the computer program Mathematica.

15
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Fig. 5 - Mathematica simulation of the i.oint-spread function for

a Michelson interfcromeer as given analytically by F1 . (41)

We note from Fig. 5 that the Michelson interferometer dses not have a spread function that has a

sharp, single peak at the origin. Thus when this spread function is convolved with the object
function, it cannot produce an image. From Eq. (43), it is clear that this interferometer gives only

one spatial frequency component of the image so that for a point object (which contains all
frequency components with equal magnitude), the image is the single spatial frequency shown in

Fig. 5. This interferometer is used in radio astronomy because for radio waves, we are limited to a
very few point detectors (radio receivers) that are each very expensive (generally with very large

parabolic dish antennas). Thus the Michelson interferometer is mandated by physical constraints

as well as history. A radio telescope is made up oi many i,,'.,,on interferometers each giving

the magnitude and phase of only one spatial frequency .o-, , inent of the required image. Spatial

frequency data are collected from many such interferorneters until enough are available to do an

approximate inverse Fourier transform to obtain the image. This method can be applied to imaging

sources of quasi-homogeneous light as well as radio waves. There are some obvious advantages

to such an approach. The small area required to collect light for each of the two pinholes makes for
two, very light-weight, compact collectors. Images can be produced, of coursc, only if the light

received by the two collectors can be made to interfere; and also, if a common phase reference can

be maintained for the complex data from all of the interferometers. Some disadvantages of imaging

16
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with interferometers are the low sensitivity due to the small amount of light available to each

collector and the long time required to obtain enough spatial frequency data and process it to form

the image.

The next, more complicated interferometer vuld have three pinholes arranged at the comers of

an equilateral triangle with sides of length d. " .r' mittance function would then become

T( ) = 8(') c; 4; -- !,
+ 8 -2d ,F3')8(71 + d / - 3)

+ 2( d - , 2 '4)(i + d / r§). (44)

By substitution from Eq. (44) into Eq. (38) and ,'vafuating the result numerically, we get the point-

spread function illustrated in Fig. 6.

Fig. 6 =- MathCI-atica simulation of the point-spread function for

an interferometer with a three.point aperture as given by Eq. (44)

This interferometer gives us an image by using six spatial frequency i,:omponents from the

object, which are equally weighted, plus a more heavily weighted DC component. From Fig. 6, it
is clear that there is no single, central maximum at the origin. Thus we still can't get an image

17
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from only one such interferometer. To my knowledge, no work has been done on the use of an

array of such interferometers to form an image by the sort of aperture synthesis used in radio

interferometer. Isolating the six spatial frequencies from each interferometer might be a problem.

The next, more complicated interferometer would have four pinholes located at the comers of a

square box so that the transmittance function would become

T( );= c(( - d),6(77- d)

+8(" - d)6(r7 + d)
+ ,&( + d)8(77 - d)

+ J( + d)8(71 + d). (45)

Upon substitution from Eq. (45) into Eq. (38) and again by using numerical evaluation, we get the

point-spread function illustrated in Fig. 7.

FiL. 7 - Mathcmatica simulation of the point-spread function for

an intcrfcromctcr with a four-point aperture as given by Eq. (45)

18



NRL REPORT 9336

For the four-pinhole interferometer, the image is made up of ten spatial frequency components;
a DC component weighted 4, four components on the Cartesian axes weighted 2, and four on the

diagonals weighted 1. Since Fig. 7 shows no single maximum at the origin, this interferometer

also gives no image if used alone.

We will define an interferometer (as opposed to a telescope) as an optical system like those

described so far that do not form images. This is not to say that data from an array of such

interferometers cannot be used to form an image, as is the case for the Michelson interferometer

used in radio astronomy. This definition applies to a single interferometer. If we increase the

number of pinholes enough with a center of symmetry at the center of them, we eventually find that

the spread function has a large maxima at the origin so that a true image forms when the spread

function is convolved with the object function. Such systems will be called telescopes and are the

subject of the next section.

6. TELESCOPES

A telescope is simply an interferometer that has a sufficient number of pinholes in its aperture,

symmetrically arranged, such that its point-spread function has a strong peak at the origin.

The first telescope that we will consider has a "wye" aperture with a transmittance function

given by
T() = 8() step(Tj)

+step(-r) 5(7 - rl 2)

+ step(-7l) 8i(- + "/ 2), if 2 + 712 < d2 ,

= 0, otherwise. (46)

This instrument is a simple extension of the three-hole interferometer described above that has a

continuous distribution of pinholes added along the lines in the directions from the origins to the

three original pinholes. When observed in the x., plane, this aperture forms an upside-down letter

wye. Upon substitution from Eq. (46) into Eq. (38). we obtain the spread function shown in Fig.

8. From this figure, ve notice that the addition of the extra pinholes has produced a strong peak at

the origin. Thus the image formed by convolution of the object function with the spread function

shown in Fig. 8 (as described by Eq. (39)) is a recognizable replica of the object. The resolution is

limited by the diameter of the central peak in Fig. 8, and the background noise is limited by the

rather significant side lobes. This is the price that we pay for the limited number of pinholes in the
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aperture. But, at the same time, we gain the advantage of a very lightweight system since light
need only be collected along three one-dimensional collector arrays.

Fig. 8 - Mathcmatica simulation of the point-spread function

for a wye apcrture as given by Eq. (46)

A system with better resolution and noise can be realized without much additional weight by a
telescope with a narrow, annular aperture with the transmittance function given by

T( =a - d) -a/ d. (47)

By substitution from Eq. (47) into Eq. (38), we obtain the spread function shown in Fig. 9.
Comparison of Figs. 8 and 9 make the improvement in noise apparent.

The best, general-purpose telescope is, of course, the filled, circular aperture that has been
conventional since Galileo's time. This instrument has a transfer function given by

T( ) = circ([5 i+ Id). (48)
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Fig. 9 - Mathcmatica simulation of the point-spread function for

a thin. annular apcrturc as Fsvcn by Eq. (47)

By substituting from Eq. (48) into Eq. (38). we get the famous Airy disk pattern

h(Y) = I 2J(irL ) I (7rdx)1 2,  (49)

which is illustrated in Fig. 10. The smallest interval in the object that can be resolved in the image
after convolution of the object function with this spread function is given by the well-known

expression

= 0.61 f / d, (50)

in spatial units of one wavelength, which is easily calculated from the width of the central lobe in

Eq. (49) [9, Eq. (8.6.3.32)]. By comparison of :ig. 10 with Figs. 6 through 9, we readily see

that this is, far and away, the best spread function. It has the lowest side lobes. Thus it gives the

least noise. It also, however, requires the largest aperture. For a refractive system, the weight of

the lens alone rapidly becomes impractical as d is increased to improve the resolution as given by

Eq. (50). For a reflective system, the primary mirror is much lighter than a lens, but still gets

heavier and heavier as d is increased. Thus, a trade-off must be sought between weight and the
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added noise effects and loss of light from a sparse aperture. These are very practical engineering

problems involving detailed design and materials technology well beyond the scope of this tutorial

treatment of basic imaging theory; however, the theory developed here might be of some use in the

design.

Fig. 10 - Mathcmatica simulation of the point-spread function for

a circular aperture as given by Eq. (48)

7. CONCLUSIONS

We see easily from this analysis that the method for forming the image by using an

interferometer and a telescope are identical from a purely theoretical standpoint, as based on the

model developed in this report. In both cases, it is the cross-spectral density function in the

aperture plane of the instrument that carries the necessary information to obtain an image.
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In the case of the Michelson stellar interferometer, the complex degree of spectral coherence is

measured specifically by using interference patterns as illustrated in Fig. 5. From the measurement

of the relative modulation depth and phase shift of the illustrated sinusoidal pattern at the origin in

this figure, the amplitude and phase for the cross-spectral density function for points in the aperture

separated by d, the distance between the pinholes in Eq. (41) can be determined. Such data are

collected for all possible values of d within the aperture of the instrument, and these data are then

Fourier transformed into an image of the object as described by Carter [10, Eq. (5.1)]. This is the

way that a radio telescope is operated.

For an ordinary telescope, the imaging lens systems performs exactly the same operations as

described above for the radio telescope. The lens performs a Fourier transformation on the cross-

spectral density function over the aperture plane as given by Eq. (21), which yields the image over

the image plane.

Clearly, from the point of view of this model, the systems are identical. They only differ

physically in the manner in which the Fourier transform of the cross-spectral density function over

the aperture plane is taken. One would expect similar image quality from either approach to

imaging so long as the available data from the aperture plane are the same. Some differences

would arise, of course, because of the very different physical limitations of the two systems to

detect the cross-spectral density function precisely and perform the required Fourier transform.

Comparisons of the image quality for a telescope and an interferometer based on an analysis cF the

actual physical limitations for the two systems would require detailed systems designs and is

beyond the scope of this theoretical analysis.

Information concerning the detection and location of the booster rocket might be obtained from

a very limited number of interferometers by using point-spread function patterns of the type

illustrated in Figs. 5, 6, and 7. This might be an interesting approach for study since it might

achieve the goals of the "Brilliant Eyes" system with less size and weight than that required for a

conventional telescope.
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